Zum Inhalt springen
- {{#headlines}}
- {{title}} {{/headlines}}
Profil
| Derzeitige Stellung | Professor W-1 und Äquivalente |
|---|---|
| Fachgebiet | Geometrie, Topologie,Numerik, Optimierung, Simulation |
| Keywords | Combinatorial and computational geometry, Geometric graph theory, Turán-type problems, Quasi-planar graphs |
Aktuelle Kontaktadresse
| Land | Israel |
|---|---|
| Ort | Qiryat Tivon |
| Universität/Institution | University of Haifa |
| Institut/Abteilung | Department of Mathematics, Physics and Computer Science |
Gastgeber*innen während der Förderung
| Prof. Dr. Christian Knauer | Arbeitsgruppe Theoretische Informatik, Freie Universität Berlin, Berlin |
|---|---|
| Beginn der ersten Förderung | 01.12.2007 |
Programm(e)
| 2006 | Humboldt-Forschungsstipendien-Programm |
|---|
Publikationen (Auswahl)
| 2009 | Eyal Ackerman, Oswin Aichholzer, Balázs Keszegh: Improved upper bounds on the reflexivity of point sets. In: Computational Geometry: Theory and Applications , 2009, 241-249 |
|---|---|
| 2009 | Eyal Ackerman, Oren Ben-Zwi: On sets of points that determine only acute angles. In: Euro. J. Combinatorics, 2009, 908-910 |
| 2009 | Eyal Ackerman: On the maximum number of edges in topological graphs with no four pairwise crossing edges. In: Discrete and Computational Geometry, 2009, 365-375 |
| 2008 | Eyal Ackerman, Kevin Buchin, Christian Knauer, Rom Pinchasi, Günter Rote: There are not too many Magic Configurations. In: Discrete and Computational Geometry , 2008, 3-16 |
| 2007 | Eyal Ackerman, Gábor Tardos: On the maximum number of edges in quasi-planar graphs. In: J. Combinatorial Theory, Ser. A, 2007, 563-571 |
| 2006 | Eyal Ackerman, Gill Barequet, Ron Y. Pinter: A bijection between permutations and floorplans, and its applications. In: Discrete Applied Mathematics, 2006, 1674-1684 |
| 2006 | Eyal Ackerman, Gill Barequet, Ron Y. Pinter: On the number of rectangulations of a planar point set. In: J. Combinatorial Theory, Ser. A, 2006, 1072-1091 |
| 2006 | Eyal Ackerman, Gill Barequet, Ron Y. Pinter, Dan Romik: The number of guillotine partitions in d dimensions. In: Information Processing Letters, 2006, 162-167 |